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1 Examples:

Example 1
2 1 1
Let A= 1 2 1 |, find an orthogonal matrix P and a diagonal matrix D such that P*AP = D.
1 1 2
Solution
21t 1 1
Let f(t) = 1 22—t 1 = —(t — 1)%(t — 4). So there are two eigenvalues A\; = 1 and Ay = 4.
1 1 2—t
-1 -1 1
Since Ey, = N(A — I) =span 0 , 1 and Ey, = N(A — 4I) = span 1 . Sow =
1 0 1
-1 -1 1
0 , Wy = 1 , W3 = 1 are eigenvectors corresponding to 1,1 and 4 respectively. Then, we need
1 0 1

to use Gram-Schmidt process to convert {w;,ws, w3} into an orthogonal set.

Since A is symmetric (and hence normal) we know that eigenvectors of A corresponding to distinct eigenvalues
are orthogonal. So we only to need to use Gram-Schmidt process for eigenvectors in the same eigenspace.

-1 _1 1
2
Then, u; = 0 , Uy = 1 sug= | 1 are orthogonal eigenvectors.
1 -1 1
-1 —3 1
Finally, after normalization on {uy,us,us}, we obtain vy = % 0 ,Ug = % 11 U3 = % 1
-1 1
1 _1./2 1
V2 2V3 V3 1 00
Hence, the required matrices P = 0 2 L JandD=| 0 1 0
53
1 1. /2 1 0 0 4
V2 2V3 V3

Example 2

Let V be a finite-dimensional complex inner product space, and let u be a fixed unit vector in V. Define the
Householder operator H, : V — V by H,(z) = z — 2(z,u)u for all x € V. Prove the following results:

(a) H, is linear.

(b) Hy(x) =z if and only if x is orthogonal to w.



Solution
(a) For any z,y € V, c € C,
Ho(o + cy) = (o + cy) — 2(z + ey, uyu
= (z — 2(z,w)u) + c(y — 2(y, w)u)
= Hu(z) + cHu(y).
So H, is linear.

(b) “=" Suppose H,(x) = z. Then, 2(z,u)u = 0. Since u is a fixed unit vector, so (z,u) = 0 and x is orthogonal
to u.

“ <7 Suppose z is orthogonal to w. Then, (z,u) = 0 and so 2(x, u)u = 0. Therefore, H,(z) = z.
(c) Note u is a unit vector, then H, (u) = u — 2(u, u)u = u — 2u = —u.
(d) For any z,y €V,
(z, Hy(y)) = (Hu(2),y)
= (& = 2(z,u)u,y)
= (2, y) = 2(z,u)(u,y)

and

<£L’, Hu(y)> - <:IZ,y - 2<yau>u>
= <$,y> - 2<x,u><u,y>

So H = H,.
Andforallz € V

H2(z) = Hy(x — 2{z, u)u)
H,(z) — 2(xz,u)H,(u)

— 2z, u)u — 2{x, u)(—u)

T
x
So H2 = I, and hence, we can conclude that H, is a unitary operator on V'

Example 3

Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decom-
position T' = M7y + AoT5 + - - - + ATk, where T; is the orthogonal projection of V on E),, to prove the following
results:

(a) If T™ = Ty for some n, then T = Tj.
(b) T = —T* if and only if every A; is an imaginary number.
Solution

(a) Note, by spectral decomposition, T™ = (A1 + XoTo + -+ + \Ty)™ = Zle A'T; since T;T; = 6;;T;. Then,
we let v; to be an eigenvector of T' corresponding to A;, we have

k
0 =To(v;) = T"(v;) = Y_ N/ Ti(v;) = Ajvy.
=1

Since v; is a non-zero vector, so A; = 0 for all j and T" = Zle N =1Tp.



(b) Note each Tj is self-adjoint, so T* = AT} + AoTp + - - - + A Tk. Then,

T=-T"T(x)=-T"(z) VeV
k k
& ZAiTi(x) = fZATTi(x) VreV

@Z )=0 VzeV

@Z?Re Ti(x)=0 VzeV

@Re()\i)zoforlgigkz

2 Exercises:

Question 1 (Section 6.5 Q21):
Let A and B be n x n complex matrices that are unitarily equivalent.
(a) Prove that tr(A*A)=tr(B*B). (Hint: tr(XY)=tr(Y X) for any n x n matrices X and Y)
(b) Using (a) to prove that 3", [Ay]* = 27—, [Bijl*

i

(¢) Using (b) to determine whether < ; 3 ) and ( 11

) are unitarily equivalent or not.

Question 2 (Section 6.5 Q30):

Suppose that § and  are ordered bases for an n-dimensional inner product space V. Prove that if @) is a unitary
n X n matrix that changes «- coordinates into 5-coordinates, then [ is orthonormal if and only if v is orthonormal.

Question 3 (Section 6.6 Q6):

Let T be a normal operator on a finite-dimensional inner product space V. Prove that if T is a projection, then
T is also an orthogonal projection.

Solution
Question 1

(a) Since A and B are unitarily equivalent, then there exists a unitary matrix P such that A = P*BP. So

tr(A*A) = tr((P*BP)*(P*BP)) = tr((P* B*P)(P*BP)) = tr(P*B*BP) = tr(B*BPP*) = tr(B*B).

(b) Note
VI PN o) S TN 33 v s B SRV
i=1 i=1 j=1 i=1 j=1 ij=1

Similarly, tr(B*B) = 7', _ | Bij|*. Therefore, 337", |Ai;|> = 37—, |Bij|*-

(c) Let A= < é 3 ) and B = < i 411 > thenZ” I\A”P_l()andzm 1 |1Bij|* =19, so A and B are not
unitarily equivalent.
Question 2

We first write 8 = {v1,v2,...,v,} and v = {wy, wa, ..., wy}.



On one hand, suppose § is an orthonormal ordered basis. As Q) = [I]g, SO w; = 2?21 Qjivj. Then,
(wi,ws) = (O Qrivk, Y Qujvr)
k=1 1=1

n
= QriQu;j
k=1
= 6
because 22:1 QriQy; is the inner product of i-th column and j-th column of the unitary matrix @. Therefore, v
is also an orthonormal ordered basis.

On the other hand, since @ is unitary, so Q* = [I ]g is also unitary. By the similar technique above, we can also
show (3 is orthonormal given that v is orthonormal.

Question 3

By definition, given that 7T is a projection, T is an orthogonal projection if R(T)* = N(T) and R(T) = N(T)*.
Since V is finite-dimensional, so it is sufficient to show R(T)+ = N(T) only.

On one hand, for any = € R(T)*,
(T(2),T(y)) = (&, T"T(y)) = (=, T(T"(y))) =0 VyeV

since T is normal and z € R(T)*. So z € N(T).
On the other hand, for any « € N(T),

(#,T(y) = (T"(z),y) =0 VyeV

since T is normal and ||T*(z)|| = ||T(x)|| = 0 implies T*(x) = 0. So = € R(T)*.



