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1 Examples:

Example 1

Let A =

 2 1 1
1 2 1
1 1 2

, find an orthogonal matrix P and a diagonal matrix D such that P ∗AP = D.

Solution

Let f(t) =

∣∣∣∣∣∣
2− t 1 1
1 2− t 1
1 1 2− t

∣∣∣∣∣∣ = −(t− 1)2(t− 4). So there are two eigenvalues λ1 = 1 and λ2 = 4.

Since Eλ1
= N(A − I) =span


 −10

1

 ,

 −11
0

 and Eλ2
= N(A − 4I) = span


 1

1
1

. So w1 = −10
1

 , w2 =

 −11
0

 , w3 =

 1
1
1

 are eigenvectors corresponding to 1,1 and 4 respectively. Then, we need

to use Gram-Schmidt process to convert {w1, w2, w3} into an orthogonal set.

Since A is symmetric (and hence normal) we know that eigenvectors of A corresponding to distinct eigenvalues
are orthogonal. So we only to need to use Gram-Schmidt process for eigenvectors in the same eigenspace.

Then, u1 =

 −10
1

 , u2 =

 − 1
2
1
− 1

2

 , u3 =

 1
1
1

 are orthogonal eigenvectors.

Finally, after normalization on {u1, u2, u3}, we obtain v1 = 1√
2

 −10
1

 , v2 =
√

2
3

 − 1
2
1
− 1

2

 , v3 = 1√
3

 1
1
1

.

Hence, the required matrices P =


− 1√

2
− 1

2

√
2
3

1√
3

0
√

2
3

1√
3

1√
2
− 1

2

√
2
3

1√
3

 and D =

 1 0 0
0 1 0
0 0 4

 .

Example 2

Let V be a finite-dimensional complex inner product space, and let u be a fixed unit vector in V . Define the
Householder operator Hu : V → V by Hu(x) = x− 2〈x, u〉u for all x ∈ V. Prove the following results:

(a) Hu is linear.

(b) Hu(x) = x if and only if x is orthogonal to u.

(c) Hu(u) = −u.

(d) H∗u = Hu and H2
u = I.
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Solution

(a) For any x, y ∈ V , c ∈ C,

Hu(x+ cy) = (x+ cy)− 2〈x+ cy, u〉u
= (x− 2〈x, u〉u) + c(y − 2〈y, u〉u)
= Hu(x) + cHu(y).

So Hu is linear.

(b) “⇒ ” Suppose Hu(x) = x. Then, 2〈x, u〉u = 0. Since u is a fixed unit vector, so 〈x, u〉 = 0 and x is orthogonal
to u.

“⇐ ” Suppose x is orthogonal to u. Then, 〈x, u〉 = 0 and so 2〈x, u〉u = 0. Therefore, Hu(x) = x.

(c) Note u is a unit vector, then Hu(u) = u− 2〈u, u〉u = u− 2u = −u.

(d) For any x, y ∈ V,

〈x,H∗u(y)〉 = 〈Hu(x), y〉
= 〈x− 2〈x, u〉u, y〉
= 〈x, y〉 − 2〈x, u〉〈u, y〉

and

〈x,Hu(y)〉 = 〈x, y − 2〈y, u〉u〉
= 〈x, y〉 − 2〈x, u〉〈u, y〉

So H∗u = Hu.

And for all x ∈ V

H2
u(x) = Hu(x− 2〈x, u〉u)

= Hu(x)− 2〈x, u〉Hu(u)

= x− 2〈x, u〉u− 2〈x, u〉(−u)
= x

So H2
u = I, and hence, we can conclude that Hu is a unitary operator on V

Example 3

Let T be a normal operator on a finite-dimensional complex inner product space V . Use the spectral decom-
position T = λ1T1 + λ2T2 + · · · + λkTk, where Ti is the orthogonal projection of V on Eλi , to prove the following
results:

(a) If Tn = T0 for some n, then T = T0.

(b) T = −T ∗ if and only if every λi is an imaginary number.

Solution

(a) Note, by spectral decomposition, Tn = (λ1T1 + λ2T2 + · · · + λkTk)
n =

∑k
i=1 λ

n
i Ti since TiTj = δijTi. Then,

we let vj to be an eigenvector of T corresponding to λj , we have

0 = T0(vj) = Tn(vj) =

k∑
i=1

λni Ti(vj) = λnj vj .

Since vj is a non-zero vector, so λj = 0 for all j and T =
∑k
i=1 λiTi = T0.
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(b) Note each Ti is self-adjoint, so T ∗ = λ1T1 + λ2T2 + · · ·+ λkTk. Then,

T = −T ∗ ⇔ T (x) = −T ∗(x) ∀x ∈ V

⇔
k∑
i=1

λiTi(x) = −
k∑
i=1

λiTi(x) ∀x ∈ V

⇔
k∑
i=1

(λi + λi)Ti(x) = 0 ∀x ∈ V

⇔
k∑
i=1

2Re(λi)Ti(x) = 0 ∀x ∈ V

⇔ Re(λi) = 0 for 1 ≤ i ≤ k

2 Exercises:

Question 1 (Section 6.5 Q21):

Let A and B be n× n complex matrices that are unitarily equivalent.

(a) Prove that tr(A∗A)=tr(B∗B). (Hint: tr(XY )=tr(Y X) for any n× n matrices X and Y )

(b) Using (a) to prove that
∑n
i,j=1 |Aij |2 =

∑n
i,j=1 |Bij |2.

(c) Using (b) to determine whether
(

1 2
2 i

)
and

(
i 4
1 1

)
are unitarily equivalent or not.

Question 2 (Section 6.5 Q30):

Suppose that β and γ are ordered bases for an n-dimensional inner product space V . Prove that if Q is a unitary
n×n matrix that changes γ- coordinates into β-coordinates, then β is orthonormal if and only if γ is orthonormal.

Question 3 (Section 6.6 Q6):

Let T be a normal operator on a finite-dimensional inner product space V . Prove that if T is a projection, then
T is also an orthogonal projection.

Solution

Question 1

(a) Since A and B are unitarily equivalent, then there exists a unitary matrix P such that A = P ∗BP. So

tr(A∗A) = tr((P ∗BP )∗(P ∗BP )) = tr((P ∗B∗P )(P ∗BP )) = tr(P ∗B∗BP ) = tr(B∗BPP ∗) = tr(B∗B).

(b) Note

tr(A∗A) =

n∑
i=1

(A∗A)ii =

n∑
i=1

n∑
j=1

A∗ijAji =

n∑
i=1

n∑
j=1

AjiAji =

n∑
i,j=1

|Aij |2.

Similarly, tr(B∗B) =
∑n
i,j=1 |Bij |2. Therefore,

∑n
i,j=1 |Aij |2 =

∑n
i,j=1 |Bij |2.

(c) Let A =

(
1 2
2 i

)
and B =

(
i 4
1 1

)
, then

∑2
i,j=1 |Aij |2 = 10 and

∑2
i,j=1 |Bij |2 = 19, so A and B are not

unitarily equivalent.

Question 2

We first write β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wn}.
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On one hand, suppose β is an orthonormal ordered basis. As Q = [I]βγ , so wi =
∑n
j=1Qjivj . Then,

〈wi, wj〉 = 〈
n∑
k=1

Qkivk,

n∑
l=1

Qljvl〉

=

n∑
k=1

QkiQkj

= δij

because
∑n
k=1QkiQkj is the inner product of i-th column and j-th column of the unitary matrix Q. Therefore, γ

is also an orthonormal ordered basis.

On the other hand, since Q is unitary, so Q∗ = [I]γβ is also unitary. By the similar technique above, we can also
show β is orthonormal given that γ is orthonormal.

Question 3

By definition, given that T is a projection, T is an orthogonal projection if R(T )⊥ = N(T ) and R(T ) = N(T )⊥.
Since V is finite-dimensional, so it is sufficient to show R(T )⊥ = N(T ) only.

On one hand, for any x ∈ R(T )⊥,

〈T (x), T (y)〉 = 〈x, T ∗T (y)〉 = 〈x, T (T ∗(y))〉 = 0 ∀y ∈ V

since T is normal and x ∈ R(T )⊥. So x ∈ N(T ).

On the other hand, for any x ∈ N(T ),

〈x, T (y)〉 = 〈T ∗(x), y〉 = 0 ∀y ∈ V

since T is normal and ||T ∗(x)|| = ||T (x)|| = 0 implies T ∗(x) = 0. So x ∈ R(T )⊥.
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